Kinematics 1-D Motion: Free Fall: The Calculations: Guided Notes

I. How fast does one fall in free fall?
A. Ignoring air resistance, an object accelerates downward at \qquad .
B. An object falls \qquad faster each \qquad it falls.

II. Terminal velocity

A. What is terminal velocity?
B. Force of gravity pulling \qquad is balanced by the \qquad of air resistance pushing \qquad .
C. When the two forces are \qquad the person stops \qquad and falls to the earth at a \qquad velocity.
D. This speed is between \qquad and \qquad mph.
E. Dependent on \qquad and the \qquad of the diver.

III. Free Fall Equations

A. How fast is the object falling?
B. How fast is the object falling?
C. How far has the object fallen?
D. How far has the object fallen?
E. Landing Speed?

IV. Practice 1:

A. A diver jumps from $10,000 \mathrm{ft}$. How far down will the diver be after 5 s ?
B. What is the speed of the diver at this time?
C. How far down will the diver be after 5 seconds?
D. What is the speed of the diver at this time?

V. Practice 2:

A. Michael drops a pencil down the stairs from the 3 rd floor. Where is the pencil 1.5s later?
B. How fast is the pencil falling at $1.5 \mathbf{s}$?

VI. Practice 3: Elevator Key anyone?

A. The single cable supporting the school elevator breaks when the elevator is at rest on the $3^{\text {rd }}$ floor (120 m). There are no kittens in the elevator. With what speed does the elevator strike the ground?

B. How long did it fall?

VII. Your turn to practice

A. We are standing on top of the building for a great experiment. Dewey and Baker decided to jump off (or perhaps they were pushed) at exactly the same moment as we drop a stone. There is no air resistance. All three are propelled vertically downward at $12.0 \mathrm{~m} / \mathrm{s}$. The roof is 30 m off the ground.
B. Who/what reaches the ground first? How long does it take for the stone to reach the ground? What is the speed of the stone at impact?

